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Forest ecosystem dynamics modeling, remote sensing data analysis, and a

geographical information system (GIS) were used together to determine the possible

growth and development of a northern forest in Maine, USA. Field measurements and

airborne synthetic aperture radar (SAR) data were used to produce maps of forest cover

type and above ground biomass. The remotely sensed forest attributes were used together

with a soils map to identify the stand age at which to begin model simulation runs. This

approach enabled the development of predictive maps of forest type and biomass for up

to 100 years in the future. Longer periods can be examined by extending the duration of

the model runs.

The forest growth model can indicate the likely type of forest growing on a

particular soil. This information can be used to improve the classification of remotely

sensed data.. A preliminary analysis of stand age and predicted age also indicates that the

technique presented here is valid. Despite the uncertainties of the actual soil type for a

pixel and errors in the remote sensing maps the results demonstrate the potential for using

remote sensing in combination with ecosystem models to simulate forest dynamics. The

technique could be used to augment ground data in remote area if the model can be



parameterized for the appropriate soil and forest type. Additional stand age related

variables such as leaf area index and canopy height can be added to the procedure by

inclusion of appropriate remote sensing data sets such as Landsat and eventually the

Vegetation Canopy Lidar.

This approach is also amenable to studying carbon flux dynamics as they are

controlled by forest structure. More realistic dynamics may be provided by models that

explicitly follow the carbon budgets of individual trees. Since forest type maps and

biomass maps can be generated for any set of simulation conditions the approach

described may be useful for understanding the effects of management practices on forests

and the response of forest dynamics to changing climate. The results obtained were

consistent with observed forest conditions and expected successional trajectories. The

study demonstrated that ecosystem models might be used in a spatial context when

parameterized and used with georeferenced data sets.
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ABSTRACT

Forest ecosystem dynamics modeling, remote sensing data analysis, and a geographical

information system (GIS) were used together to determine the possible growth and

development of a northern forest in Maine, USA. Field measurements and airborne synthetic

aperture radar (SAR) data were used to produce maps of forest cover type and above ground

biomass. These forest attribute maps, along with a conventional soils map, were used to

identify the initial conditions for forest ecosystem model simulations. Using this information

along with ecosystem model results enabled the development of predictive maps of forest

development. The results obtained were consistent with observed forest conditions and

expected successional trajectories. The study demonstrated that ecosystem models might be

used in a spatial context when parameterized and used with georeferenced data sets.

INTRODUCTION

The circumpolar boreal forest is one of the Earth's major vegetative ecosystems,

accounting for nearly 20% of the terrestrial plant carbon and covering one-sixth of the Earth's

land surface (Bolin 1986). The northern and southern margins are especially sensitive to

climate change as evidenced by the northward migration of boreal species since the end of the

Wisconsin Ice Age (Pastor & Mladenoff 1992). There is now evidence that growing season

duration and vegetation growth are increasing in the high latitudes (Myneni et al., 1997).
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Increasing harvesting pressures coupled with the ever present impacts of forest fires and

insect outbreaks are changing the face of the boreal forest. The nature and extent of the

impacts of these changes, as well as the feedback on global climate, are not well understood,

but may be addressed through modeling the interactions of the vegetation, soil, and energy

components of the boreal ecosystem (Pastor and Post 1988; Bonan et al., 1995; Trumbore et

al, 1996). The boreal forest is immense in extent and, although similar in structure across the

biome, has significant regional and local variability (Larsen 1980). This is especially evident

in the hydrology and soils of the biome due to the effects of glacial activity during the

Pleistocene (Rourke et al. 1978). The use of combined ecosystem and remote sensing

models presents an especially efficient and tractable method to study regional and global

environmental changes.

The Forest Ecosystem Dynamics (FED) Project at GSFC involves the development and

integration of models to understand soil, vegetation, and radiation dynamics in northern

forest ecosystems. Through the use of simulation models, remote sensing, field

investigation, and GIS, the vegetation, soil, and energy components within northern forests

are being investigated, and their responses to global change and other disturbances are being

explored and quantified (Levine et al., 1993). The development and implementation of a

framework for combining models that simulate various ecosystem processes (Workbench for

Interactive Simulation of Ecosystems, WISE) was described by Knox et al., (1997). Work

has continued that uses ecosystem model simulations along with remote sensing models to

explore remote sensing algorithm development (Ranson et al., 1997, Kimes et al., 1997). In

this work, data collection and model development has focused on northern forests of North

America including Maine, USA and Saskatchewan, Canada. Intensive field measurements

coinciding with aircraft and satellite overflights, as well as ancillary data, were obtained and

incorporated into a GIS. The GIS is used to provide driving variables for the models,

initialize model runs, validate model predictions, and identify areas requiring more intensive
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study.

In thepresentstudywedemonstrateatechniquefor connectingmodelsof forest

dynamicsandsoil processesalongwith remotelysensedforestattributesin aspatiallyexplicit

manner.Specifically,wedescribetheconnectionsof aforestsuccessionmodelwith a soil

physicsmodelandtheapplicationof GISdatasetsincludingsoil mapsandremotesensing

derivedmapsof foresttypeandbiomassto initializeandtestthemodel.This articleis

organizedinto foursectionsincludingtheintroduction.Thebackgroundsectionprovides

brief descriptionsof themodelingcomponents,thecoupledmodelenvironment,andthe

remotesensingandfield data.Themethodssectiondescribestheimplementationof theforest

successionmodel,theanalysisof remotesensingdataandthepredictionof forestdynamics

aredescribed.The mapsderivedfrom remotesensingandpredictivemapsof forest

dynamicsarediscussedin theresultssection.

BACKGROUND

Forest Dynamics Modeling

Mathematical models that simulate forest dynamics have gained widespread acceptance

and use over the past two decades. The most successful models (in terms of general

applicability to diverse forest types) are individual tree-based models called gap models

(Shugart et al., 1992, Botkin 1993, Deutschman et al., 1997). The strength of these models

lies in their versatility to predict qualitative successional patterns related to species

composition and forest structure.

The gap model, ZELIG (Urban, 1990), is an individual tree simulator that simulates the

annual establishment, annual diameter growth, and mortality of each tree on an array of

model plots. Model states are recorded in a tally of all trees on a plot, with each tree labeled

by species, size (diameter), height to base of live crowns, and vigor (based on recent growth

history). The competitive environment of the plot is defined by the height, leaf area, and
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woodybiomassof eachindividualtreedeterminedby allometricrelationshipswith diameter.

Theplot is consideredhomogeneoushorizontally,butverticalheterogeneity(canopyheight

andverticaldistributionof leafarea)is simulatedin somedetail. Establishmentandannual

diametergrowthis first computedunderoptimal (nonlimiting)conditions,andthenreduced

basedon theconstraintsof availablelight, soil moisture,soil fertility, andtemperature.

Annualclimateeffectsaresummedacrosssimulatedmonths.Seedlingestablishment,

mortality,andregenerationarecomputedstochastically,whilegrowthis largelydeterministic.

Simulationscanstartorstopat anypoint within the life cycleof aforest.Howeverfor

simulationsbeginningfrom otherthanbareground,detailsonexistingforeststatus(e.g.,

speciescompositionanddbhsizeclassdistribution)arenecessaryfor modelinitialization.

Soil Process Modeling

Thegoalof simulatingthesoil systembeneaththeforestis to understandthecontrols

andfeedbacksthatoperatewithin thesoil aswell asbetweenthesoil andtherestof theforest

environment.This includesphysical,biological,chemical,andmineralogicalcharacteristics

andmechanismsthatvaryatshort-,medium-,andlong-termtemporalscaleswithin soils.

TheFroST(FrozenSoil Temperatures)model(LevineandKnox, 1997),which includesthe

physicalprocessesoccurringwithin thesoil,wasusedwithin theFEDmodelingframework.

FroSTisa simulationmodelof soilpropertieswhich producesestimatesof watercontent,

matricpotential,temperature,andicecontentwithin eachsoil horizon.FroSTwasdeveloped

fromtheResiduemodelof Bidlakeet al. (1992)whichcouplessurfaceresidueto thesoil-

atmospheresystem,andusesnetworkanalysisto describeheatandmoisturetransfer,and

phasechangesin water.Short-waveandlong-waveradiativetransfer,changesin energy

status,rainfall interception,infiltration, redistribution,evaporation,anddrainageareall

accountedfor.Climateinput requirementsincludeglobalshort-waveradiation,air

temperatures,averagewind speed,andprecipitation.Generalsite,canopy,andsoil
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characteristics for individual horizons are also needed. Enhancements to the Residue model to

produce FroST included algorithms for calculating surface runoff, transpiration, Penman

demand, and a simple snow model. In FroST, surface residue from the Residue model is

configured to simulate above ground characteristics of forested sites. Snow properties are

simulated by changing the characteristics of the surface soil node from soil characteristics to

snow characteristics. Precipitation increases the node's thickness (i.e., snow cover), and a

simple melt factor is used to melt the snow. Once the snow has melted node characteristics

are reset to that of soil (Levine and Knox 1997).

Modeling Environment

To interactively integrate and use the forest succession and soil process models, both

models were incorporated into the Forest Ecosystem Dynamics' WISE (Workbench for

Interactive Simulation of Ecosystems) modeling environment. WISE supports interactive

configuration, manages the transfer of variables among models, and dynamically displays

results (Levine et al. 1993, Knox et al. 1997). The modeling environment allows two or more

process models to be coupled using a generic query-response system where parameter values

from detailed models in one discipline can be provided to drive models of other disciplines.

Models are encapsulated and then run synchronously from a common external clock. Database-

like features added while encapsulating each model allow models to query one another while

running. Each encapsulated model also has X-windows panels defining a model-specific

graphical "sub-interface" and a version of a configuration tool to check parameter values entered

interactively against rule sets defining allowable combinations of values. (Example WISE

panels may be viewed over the Internet via http://fedwww.gsfc.nasa.gov). Currently, several

models are encapsulated including ZELIG and FroST. With this modeling tool, scaling

parameters from detailed models can be derived to improve values used in simpler models for

the same parameter.
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Remote Sensing

The remote sensing research in the FED Project has two major objectives. The first is

to understand the sensitivities of remote sensing observations to forest structural attributes

such as forest type (e.g, Ranson and Sun, 1994a), biomass (e.g., Ranson and Sun 1997),

LAI and forest spatial characteristics (e.g. Weishampel et al., 1997). The second component

is to use remote sensing models to examine the expected signatures from forest stands with a

range of the above parameters (e.g., Ranson et al., 1997). These objectives require detailed

sets of remote sensing imagery and field data and robust canopy scattering models as

described by Ranson et al., 1997). In this paper the work involved producing maps of forest

type and biomass using SAR data (and described in detail by Ranson and Sun 1994a, 1994b,

1997).

Study Area

The area under study is located at the International Paper Northern Experimental Forest

(NEF) near Howland, Maine, USA (Figure 1.). The site is located at approximately 45 ° 15'

N latitude and 68 ° 45' W longitude. The area comprises approximately 7000 ha containing

several intensive experimental sites, where detailed ecological and mensuration measurements

have been obtained. It contains an assortment of small plantations, multi-generation clearings,

and large natural boreal-northern hardwood transition forest stands consisting of hemlock-

spruce-fir, aspen-birch, and hemlock-hardwood mixtures. Topographically, the region varies

from flat to gently rolling, with a maximum elevation change of less than 135 m within a 10

by 10 km study area. Due to the region's glacial history, soil drainage classes within a small

area may vary widely, from excessively drained to poorly drained. This site was the focus of

a NASA Multi-sensor Aircraft Campaign (MAC) (e.g., Goward et al. 1994), was a backup

Supersite for the SIR-C/XSAR missions (Ranson et al. 1997) and now serves as a NASA

Earth Observing System (EOS) Core Validation Site.
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There exists a wide variety of imagery, map data, and point data at the NEF and

surrounding areas within a Geographic Information System (GIS) for research purposes.

These data include field, tower, aircraft and satellite based measurements and are described

and distributed from the FED project's GIS database also available through the Intemet at

http://fedwww.gsfc.nasa.gov.

METHODS

In this paper we demonstrate that parameter maps developed from remotely sensed data

can be used to initialize and test a forest succession model. Figure 2 outlines the methods

used for the study reported here. First, remote sensing data were analyzed for forest type and

biomass levels and maps were developed. Second, a forest model (ZELIG) was coupled to

the soil physics model (FroST) and run for a range of soil conditions found at the site over a

500 year period (see Weishampel et al. 1999). Individual pixels from the forest type and

biomass maps along with a soil type map were compared with the results of the forest model

to determine the age of the forest represented by the pixel. These age and forest conditions

were used for model initialization and simulation results for 100 years in the future (using

current climate) were recorded. The individual steps of the method are described in the

following sections.

Remote Sensing Analysis

bnage Registration - Image registration was required to use multidate AIRSAR images.

Since our research area has low topographic relief (maximum change in elevation of 145 m

over 10 km), and the flight directions and incidence angle ranges of the pair of images were

similar, the registration was easily accomplished. A linear interpolation with about 10 control

points yielded results superior to a cubic polynomial interpolation with 20 control points.

The conditions during the AIRSAR flights apparently were quite stable and the distortion was

linear. The AIRSAR image acquired on April 15, 1994 was registered to the AIRSAR image
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acquired on October 7, 1994.

Forest Type Classification - Ranson and Sun (1994a) produced a forest type map of the

Howland area using AIRSAR images. They found that combining summer and winter

images produced better results than using data from a single date. They used principal

components analysis to reduce the number of channels used with a maximum likelihood

classifier. Here, all non-redundant channels from both dates were used with a supervised

minimum distance classifier.

A parallelepiped classifier (Moik, 1980), which approximates the hyperellipsoid

decision boundaries of Bayesian classifier by parallelepipeds, was used in this study (see

Ranson and Sun 1997). Nine land cover classes were selected from a generalized cover type

map provided by International Paper: water, bog, wetland, grassland, clearing, regeneration,

mixed forest, hardwood forest, and softwood forest. The latter five classes represent the

state of the forest stands in the area from harvest through regrowth (regeneration) to mature

"monospecies" or mixed stands.

The classifier was trained for the nine classes by locating areas identified from forest

cover maps, aerial photos and field observations on the SAR imagery. As described above

the AIRSAR image data was acquired with 12 channels (C-, L- and P-band with HH, HV,

VV, VH polarizations). The set of channels for this analysis used only one cross polarization

channel (VH) for each frequency. The registered forest type map was placed in the GIS for

further use.

Above Ground Biomass Mapping - Forest stands, measured during 1992 and 1994 were

located on AIRSAR images and 3X3 block of pixels were extracted from which the average

backscatter was calculated. The field biomass data was acquired from stands of

predominantly spruce and hemlock and mixtures of hemlock and hardwood species.

An earlier analysis of AIRSAR data over the Maine study area estimated above ground
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standing biomass from a combination of radar channels (Ranson and Sun 1994b). A

combination of P-band HV and C-band HV (i.e. PHV-CHV dB) was found to have the best

sensitivity to total above ground biomass. Briefly, the procedure involves developing a linear

regression equation with biomass and SAR backscatter. We used a cube root transformation

for the dependent variable (biomass) and combined SAR channels as the independent

variable. The cube root transformation equalizes the variance and produces a normal

distribution of biomass data (e.g. Ranson et al., 1997). The relationships between SAR

backscatter values and the cubic root of forest biomass were determined using linear

regression. Measurements from 17 homogeneous stands large enough to provide

representative radar signatures were used to develop the regression model. An additional 28

stands were used for testing. The equation using a combination of AIRSAR bands (i.e.,

PHV-CHV) was:

b 113 = 2.186 + 0.259 (PHV-CHV), r 2 = 0.78 (1)

This relation was used on a pixel by pixel basis to produce images of the predicted

biomass from the AIRSAR images. To reduce the effects of speckle the average backscatter

value from an array of points were used as the center pixel backscatter value from which the

biomass was calculated. The biomass map was also added to the GIS.

Forest Model Implementation

The forest model ZELIG (Urban 1990) adapted as described in Levine et al. (1993),

was used to simulate the successional dynamics of the southern boreal/northern hardwood

forest transition zone found at the NEF. Because soil moisture is considered to be of primary

importance in determining the structure (e.g., biomass and species composition) of these

forests (Bonan and Shugart 1989), waterlogging effects (adapted from Botkin 1993) were

included. This required connecting the ZELIG model to a soil physics model that simulates

depth to saturated soils (see Weishampel et al. 1999). Diameter at breast height (dbh), height,
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height to base of crown, and foliage density) were recorded [or each individual tree in nine

(10 X 10 m) ZELIG plots.

To implement the model, site parameters (e.g., soil fertility and monthly values of

temperature and precipitation) and autecological parameters (e.g., height and diameter

maxima and growth tolerances) were derived from empirical data and published sources

(e.g., Pastor and Post 1985, Botkin 1993). Forest succession on ten soil types (see Table 1)

found at the NEF were simulated starting from bare soil. Depth to water table and available

water holding content of the soil were derived using the FroST model (Levine and Knox

1997). Parameters for 10 soil types mapped in the study area (Figure 3) were used. The

spatial scale of the ZELIG simulations were performed to represent a patch size of 30 X 30 m

to correspond to the scale of typical remotely sensed data. This was done by running the

model for nine spatially independent 10 X 10 m plots (Weishampel et al., 1999). Because

gap models possess underlying stochasticity in their regeneration, mortality, and weather

routines, fifteen separate runs of the nine plots were performed to generate a range of stand

responses from which stand averages were calculated. The simulation results were recorded

at five year intervals up to 500 years.

Biomass for simulated trees was calculated from modeled dbh using allometric

equations developed for central Maine, USA forests (Young et al., 1980). The average

biomass was then determined for the simulated 30 m plots.

Predictive Images

The basis of modeling forest dynamics and tying the simulation to a real landscape is

essentially a model initialization problem. Knowledge of the set of soil and vegetation

attributes at the date of remote sensing imagery enables the prediction of future vegetation

attributes for a given location based on the long time series of ZELIG model results.

Referring to Figure 2, attributes of soil type, forest biomass, and forest cover type are

9/8/99 _= 10 Ranson et al



Submitted to Remote Sensing of Environment

known, as described above. These known attributes are used to initialize the model for each

location (pixel) in the remote sensing attribute and soil maps. Normally, model initialization

requires explicit knowledge of the dbh distribution and species composition. This approach

uses mapped attributes to identify the ZELIG simulation best representing the present state of

a pixel location in terms of soil type, cover class and biomass.

First the ZELIG model results were searched for soil type, vegetation classification type

and biomass level. In order to relate the SAR classification to the model only pixels classified

as forest (i.e., hardwood, softwood, mixed, regeneration) and clearing were used. Pixels

classified as regeneration were relabeled as hardwood since natural regrowth in disturbed

areas is primarily deciduous species. In the case of the pixels identified as clearing, the

original forest cover class is unknown so the mapped soil type and matching biomass level

are used to select the class. Areas mapped as bogs, wetlands, grass and water were assumed

not to change over the simulation period. Model results were coded as hardwood, softwood

and mixed forest based on the proportions of deciduous (e.g, aspen, birch, maple) and

conifer (e.g., spruce, hemlock, pine, cedar) species. Mixed stands were labeled as those

with less than 60% occurrence of hardwood or softwood. Biomass was calculated for a

simulated stand by using dbh based allometric equations that were developed for Maine

forests species (Young et al, 1980).

The simulation with the matching soil type, matching class type and minimum

difference between mapped and modeled biomass was selected as the present state of a given

pixel location. The simulation period was restricted to the first 200 years based on field

observations of the forest age structure. The simulation period that most closely matched the

known attributes became the initial stand age. Then the model results for the next 100 years

were used for the prediction of forest attributes of biomass and forest type at that pixel

location.
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UndercertainconditionsnoZELIG simulationrunmatchedthemappedsetof attributes

for a pixel location. If nosimulationruns was found that matchedboth the soil type and

covertypethenthepixelwaslabeledas"nomatch" and is not included in further analyses. In

addition, if the forest class was matched, but the biomass difference was larger than 5 Kg/m z,

then this pixel is labeled as "unknown" and not included for further analyses. The possible

reasons for no-match and unknown conditions include: the soil map is wrong for a particular

location; ZELIG model doesn't grow trees of a certain species on a particular soil though

actually found there; and remote sensing forest classification and biomass values for the pixel

are incorrect. The "unknown" and "nomatch" classes comprise about 9% of the image.

RESULTS

Remote Sensing Analysis

Maps of forest type and biomass were developed from the AIRSAR data (not shown).

The forest type classification results from the AIRSAR data compare favorably with the with

field information (Ranson and Sun, 1997). Briefly, all non-forest classes were 100%

correctly identified. Forest type classification for softwood was 94% correct. Hardwood

showed 86.5% correct classification and mixed forest showed 84.0% correct classifications.

Biomass estimation results were also consistent with ground observations. Comparing

biomass predicted with Eq. 1 against the 28 field measurements resulted in the equation:

Predictedb,om_s s = 1.954 + Measuredb_om_s_ * 1.064, r2 = 0.87. (2)

We found that the biomass method worked best for biomass values below 15 kg/m 2.

Forest Modeling

Figure 4 presents the average biomass trajectories simulated from fifteen 30 x 30 m

(900 m 2) stands growing on three of the ten NEF soil types used in the simulation. The

range of biomass simulations illustrate the importance of considering soil types in our study
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area. Generally, well or moderately well- drained soils (e.g., Dixfield in Figure 4) produced

higher biomass values in less time, whereas poorly drained soils required much more time to

establish maximum biomass values. Soil type also controlled the forest type composition

with better drained soils establishing significant proportions of hardwoods (e.g., Dixfield,

Figure 4). Poorly drained soils tended to have populations dominated by softwoods (e.g.,

Kinsman, Figure 4), although somewhat poorly well drained soils such as Colonel (Figure 4)

were populated by hardwoods at early successional stages. Because of the stochastic timing

of tree birth and death replicate simulations can exhibit considerable variation about the

averages shown in Figure 4. The simulated biomass trends and the underlying patterns of

dominance by softwood and hardwood species were consistent with field measurements

reported by Ranson and Sun (1994a and b) and Levine et al. (1994). A total of 15000

simulations were recorded (10 soil types X 15 replications X 100 time steps).

Using the forest type, biomass and soil maps to initialize the forest succession model

produced the forest type and biomass images shown in Figure 3. These maps cover an area

where detailed soils information was available within in the study area, including the small

isolated area to the east (See Soil map in Figure 3). This area was included in the mapping

because it is located on an esker with somewhat excessively well-drained soils not found

elsewhere in the study area. The initialization results were consistent with the remote sensing

images exept in the cases of no-match and unknown pixels as seen in Figure 3. This

indicates that this approach can be used to simulate the initial condition of the landscape in our

study area.

As discussed above, about 9 percent of the pixels covering the study area fell outside

the simulation results and were classified as Unknown or No-Match (see Figure 3). The

majority of No-match pixels were classified as hardwood on soils that, according to the forest

succession model results, cannot sustain hardwood forest. For example, 224 pixels were
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classified as low biomass (<10 Kg/mZ) hardwood growing on very poorly drained Kinsman

soil. From Figure 4 (Dixfield soil) it can be seen that this condition should not occur because

of the need for a better drained soil to support hardwood stands. In one instance the SAR

classification labeled a stand as hardwood growing on a poorly drained soil again resulting in

a No-Match condition. Inspection of available forest cover maps revealed this stand to

consist of northern white cedar, a conifer or softwood species. This forest type was not

trained for in the classification procedure. In this case the forest modeling helped improve the

forest classification. For Unknown pixels, most were classified as low biomass softwoods

growing on soils where the forest model shows the class should be hardwood. For example,

one can see from Figure 4 that forests on the Dixfield soil type will most likely be dominated

by hardwoods over the first 50 years of growth.

Predictive Images

The predictive images can be used to assess forest dynamics as the change in forest type

and biomass over time. Assuming that no areas of forest are harvested during the 100 year

period (although this can included in the analysis) the forest can be expected to develop,

under current climate conditions as shown in Figure 5 and Table 2. Average biomass,

accumulated over forest type, increased by about 50% over the first 25 years then increased

slowly over the next 50-year period with a gradual decrease in standard deviation. These

results indicate that the forest is mostly mature, slowly growing stands. Hardwood biomass

increased the most over the 100 year period but, because of the very small area covered,

contributed minimally to the total biomass.

The trends in forest types seen in Figure 5 and Table 2 indicate that the hardwood

stands change into mixtures of hardwood and softwood or into softwood stands. The

percentage of mixed stands increases during the first 50 years and then declines over the next

50 years. This is consistent with observations of the forest in central Maine, that is the forest
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typesof recentlydisturbedareasgenerallystart out as hardwoodor mixtures then develop

into softwoods.Poorly drainedsoils support standsof softwood, while well-drainedsoils

sustaindevelopmentof hardwoods.Existingstandsof hardwoodson the sitearegrowing on

fire disturbedareasand aremostlynearingmaturity and subsequentdecadence.Of course,

detailedanalysesof individualstandsarerequiredto confirm thattheseobservationsarevalid

atthelocallevel

Sincetheinitializationprocedureassumesthat theageof thestandon a givensoil type

canbeestimatedfrom theforesttypeandbiomasslevel for a known soil it is instructiveto

examineareasof known agein thestudyarea. Agedatais difficult to compile,but we had

two sourcesof informationavailable.Timberharvestingin theform of clearcuttinghasbeen

conductedin the imagedareasince1982. Comparingthe initializationage with the ageof

theseclearingsrevealsif thetechniquecanbeusedto estimatethe ageof young stands. The

secondsourceof agedatawasmeasurementfrom 5 plotsacquiredby GSFC personnelin the

springof 1994. For thesedatathe samemeasurementswere acquiredas for the biomass

estimationmethoddescribedabove. In addition, two co-dominanttreesin eachof 9 sample

plotswerecoredandthetreerings analyzedlaterin a laboratory. Up to 18 sampleswere

availablefor eachplot in eachsite. Thesesiteswerelocatedon a mapof standageproduced

from themodelinitialization. Thatis,eachpixel valuerepresentstheageof the standselected

from themodelsimulationsbasedon foresttype, biomassandsoil type. An arrayof 3X3

pixels wereextractedfrom theimageandaveragedto estimatethe predictedagefor a site.

Figure 6 presentsa plot of the measuredand modeledheight results. The datavaluesare

clusteredattheyoungagesfor theclearcut dataand at olderagesfrom the sampleplot data

so no attemptwas madeto developa statisticalrelationship,howeverthe scatterof the data

aboutthe lto 1line is small. Theseresultsarepromisingandindicatethis techniquemaybe

suitablefor estimatingstandagefor thepurposeof modelinitialization.
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SUMMARY

A procedure to use forest type and biomass maps developed from remote sensing data

to initialize a forest growth model for a northern forest in Maine, USA was descnbed. The

remotely sensed forest attributes were used together with a soils map to identify the stand age

at which to begin model simulation runs. This approach enabled the development of

predictive maps of forest type and biomass for up to 100 years in the future. Longer periods

can be examined by extending the duration of the model runs.

The forest growth model can indicate the likely type of forest growing on a particular

soil. This information can be used to improve the classification of remotely sensed data. The

results presented are reasonable in terms of the initial forest classification and biomass

estimates. A preliminary analysis of stand age and predicted age also indicates that the

technique presented here is valid. Despite the uncertainties of the actual soil type for a pixel

and errors in the remote sensing maps the results demonstrate the potential for using remote

sensing in combination with ecosystem models to simulate forest dynamics. The technique

could be used to augment ground data in remote area if the model can be parameterized for the

appropriate soil and forest type. Additional stand age related variables such as leaf area index

and canopy height can be added to the procedure by inclusion of appropriate remote sensing

data sets such as Landsat and eventually the Vegetation Canopy Lidar.

This approach is also amenable to studying carbon flux dynamics as they are controlled

by forest structure. More realistic dynamics may be provided by models that explicitly follow

the carbon budgets of individual trees (e.g., Friend et al. 1996). Since forest type maps and

biomass maps can be generated for any set of simulation conditions the approach described

may be useful for understanding the effects of management practices on forests and the

response of forest dynamics to changing climate. The technique of using coupled models and

remote sensing will be applied to data sets that cover larger areas of boreal forests in the USA
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andCanada.
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List of Figures

Figure 1. Location of study site in the Northeastern USA.

Figure 2. Diagram of procedures for using maps of forest attributes developed from remote

senisng and soil survey maps to initialize a forest succession model and develop maps of

future forest type and biomass.

Figure 3. Maps of forest type (Top Right), above ground biomass (Top Left) developed

from remote sensing analysis and the ZELIG Model. (Bottom) Soil survey map. These

maps define the initial conditions for spatially explicit forest growth model simulations.

Figure 4. Example results of the forest simulation model (ZELIG) with mean yearly biomass

of softwood and hardwood forest stands growing on soils with different drainage classes.

The biomass trajectories illustrate the effect of soil type on the analysis.

Figure 5. Predictive maps developed from remote sensing and ecosystem modeling for 25,

50,75 and 100 years from remote sensing data acquisition (1994). (Upper) forest type,

(Lower) biomass map. See Figure 3 for map legends. North is at top. Image area is about

6X6 km.

Figure 6. Comparison of measured stand mean age with model results.
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Table 1. Ten soil seriesandassociateddrainageand taxonomicclassificationsfound in the

Mainestudysiteandusedfor forestmodelsimulations.

Soil Series Drainage Class Taxonomic Classification

Adams Somewhat Excessively Sandy, mixed, frigid Typic Haplorthod

Boothbay Somewhat Poorly Fine-illitic, nonacid, frigid Andic Dystrochrept

Colonel Somewhat Poorly Coarse-loamy, mixed, frigid Andic Dystrochrept

Croghan Somewhat Poorly Sandy, mixed, frigid Aquic Haplorthod

Dixfield Moderately Well Coarse-loamy, mixed, frigid Andic Dystrochrept

Kinsman Very Poorly Sandy, mixed, frigid Aeric Haplaquod

Marlow Well Coarse-loamy, mixed, frigid Typic Haplorthod

Peacham Very Poorly Coarse-loamy, mixed, frigid Typic Haplohumod

Scantic Poorly Fine-illitic, nonacid, frigid Typic Haplaquept

Westbury Poorly Coarse-loamy, mixed, frigid Aeric Haplaquod

Table 2. Simulated forest type and average biomass for forest areas in study area over a 100-

year simulation period.

Simulation Year

Forest Type
0 25 50 75 100

Percent of Forested Area
Hardwood 23.4 22.0 5.7 1. i

Softwood 61.5 65.7 70.6 79.0

Mixed 15.2 12.2 23.7 20.0

0.9

85.1

14.0

Forest Type Biomass - Mean, Kg/m z, (Std. Dev. ,Kg/m 2)
Hardwood 5.3 11.5 17.3 20.8 23.4

(4.1) (2.0) (2.5) (2.6) (4.6)
Softwood 10.6 12.0 14.2 14.8 16.0

(4.5) (3.9) (3.1) (2.8) (3.5)
Mixed 4.5 14.5 14.0 16.4 17.1

(4.9) (4.9) (2.6) (3.1) (3.1)
Combined 8.5 12.2 14.3 15.1 16.3

(4.5) (3.7) (2.9) (2.8) (3.4)
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Figure 1. Location of study site in the Northeastern USA.
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GIS Maps

and Remote Sensing

Image products

Forest
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Model (Zelig)
Siimulations

Predictive Maps
from Succession

Model
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1
Forest Type

I
1

0 Stand Age 500

10 soils, 15 plots, over 500 years

15000 total simulations

Forest type, height, dbh, density, etc.
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__D n n

Forest Type and Biomass

Figure 2. Conceptualized diagram of procedures for using GIS data to initialize a forest

succession model and develop maps of future forest type and biomass for a given pixel.
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Figure 3. Maps of forest type (lower right), above ground biomass (lower left) developed

from remote sensing analysis and soil type map (top) made from on-site surveys. These

maps define the initial conditions for forest growth model simulations. Image area is
about 6X6 km.
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Figure 6. Comparison of measured stand mean age with model results.
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